Skip to content

ONNX ASR

PyPI - Version PyPI - Downloads PyPI - Python Version PyPI - Types PyPI - License
uv Ruff mypy Material for MkDocs CodeFactor Grade Codecov GitHub - CI

onnx-asr is a Python package for Automatic Speech Recognition using ONNX models. It's a lightweight, fast, and easy-to-use pure Python package with minimal dependencies (no need for PyTorch, Transformers, or FFmpeg):

numpy onnxruntime huggingface-hub

Key features of onnx-asr include:

  • Supports many modern ASR models
  • Runs on a wide range of devices, from small IoT / edge devices to servers with powerful GPUs (benchmarks)
  • Works on Windows, Linux, and macOS on x86 and Arm CPUs, with support for CUDA, TensorRT, CoreML, ROCm, and DirectML
  • Supports NumPy versions from 1.21.6 to 2.4+ and Python versions from 3.10 to 3.14
  • Loads models from Hugging Face or local directories, including quantized versions
  • Accepts WAV files or NumPy arrays, with built-in file reading and resampling
  • Supports custom models (if their architecture is supported)
  • Supports batch processing
  • Supports long-form recognition using VAD (Voice Activity Detection)
  • Can return token-level timestamps and log probabilities
  • Provides a fully typed and well-documented Python API
  • Provides a simple command-line interface (CLI)

Note

Supports Parakeet v2 (En) / v3 (Multilingual), Canary v2 (Multilingual) and GigaAM v2/v3 (Ru) models!

Tip

You can check onnx-asr demo on HF Spaces:

Open in Spaces

Table of Contents

Quickstart

Install onnx-asr:

pip install onnx-asr[cpu,hub]

Load model and recognize WAV file:

import onnx_asr

# Load the Parakeet TDT v3 model from Hugging Face (may take a few minutes)
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")

# Recognize speech and print result
result = model.recognize("test.wav")
print(result)

Warning

The maximum audio length for most models is 20-30 seconds. For longer audio, VAD can be used.

For more examples, see usage examples.

Supported Model Architectures

The package supports the following modern ASR model architectures (comparison with original implementations):

  • Nvidia NeMo Conformer/FastConformer/Parakeet/Canary (with CTC, RNN-T, TDT and Transformer decoders)
  • Kaldi Icefall Zipformer (with stateless RNN-T decoder) including Alpha Cephei Vosk 0.52+
  • GigaChat GigaAM v2/v3 (with CTC and RNN-T decoders, including E2E versions)
  • T-Tech T-one (with CTC decoder, no streaming support yet)
  • OpenAI Whisper

When saving these models in ONNX format, usually only the encoder and decoder are saved. To run them, the corresponding preprocessor and decoding must be implemented. Therefore, the package contains these implementations for all supported models:

  • Log-mel spectrogram preprocessors
  • Greedy search decoding

Installation

The package can be installed from PyPI:

  1. With CPU onnxruntime and huggingface-hub:

    pip install onnx-asr[cpu,hub]
    

  2. With onnxruntime for NVIDIA GPUs and huggingface-hub:

    pip install onnx-asr[gpu,hub]
    

Warning

First, you need to install the required version of CUDA / TensorRT.

You can also install onnxruntime dependencies and TensorRT via Pip:

pip install onnxruntime-gpu[cuda,cudnn] tensorrt-cu12-libs

  1. Without onnxruntime and huggingface-hub (if you already have some version of onnxruntime installed and prefer to download the models yourself):
    pip install onnx-asr
    

To install the latest version of onnx-asr from sources, use pip (or uv pip):

pip install git+https://github.com/istupakov/onnx-asr

Usage Examples

Load ONNX model from Hugging Face

Load ONNX model from Hugging Face and recognize WAV file:

import onnx_asr
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")
print(model.recognize("test.wav"))

Warning

Supported WAV file formats: PCM_U8, PCM_16, PCM_24, and PCM_32 formats. For other formats, you either need to convert them first, or use a library that can read them into a NumPy array.

Supported model names:

  • gigaam-v2-ctc for GigaChat GigaAM v2 CTC (origin, onnx)
  • gigaam-v2-rnnt for GigaChat GigaAM v2 RNN-T (origin, onnx)
  • gigaam-v3-ctc for GigaChat GigaAM v3 CTC (origin, onnx)
  • gigaam-v3-rnnt for GigaChat GigaAM v3 RNN-T (origin, onnx)
  • gigaam-v3-e2e-ctc for GigaChat GigaAM v3 E2E CTC (origin, onnx)
  • gigaam-v3-e2e-rnnt for GigaChat GigaAM v3 E2E RNN-T (origin, onnx)
  • nemo-fastconformer-ru-ctc for Nvidia FastConformer-Hybrid Large (ru) with CTC decoder (origin, onnx)
  • nemo-fastconformer-ru-rnnt for Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder (origin, onnx)
  • nemo-parakeet-ctc-0.6b for Nvidia Parakeet CTC 0.6B (en) (origin, onnx)
  • nemo-parakeet-rnnt-0.6b for Nvidia Parakeet RNNT 0.6B (en) (origin, onnx)
  • nemo-parakeet-tdt-0.6b-v2 for Nvidia Parakeet TDT 0.6B V2 (en) (origin, onnx)
  • nemo-parakeet-tdt-0.6b-v3 for Nvidia Parakeet TDT 0.6B V3 (multilingual) (origin, onnx)
  • nemo-canary-1b-v2 for Nvidia Canary 1B V2 (multilingual) (origin, onnx)
  • whisper-base for OpenAI Whisper Base exported with onnxruntime (origin, onnx)
  • alphacep/vosk-model-ru for Alpha Cephei Vosk 0.54-ru (origin)
  • alphacep/vosk-model-small-ru for Alpha Cephei Vosk 0.52-small-ru (origin)
  • t-tech/t-one for T-Tech T-one (origin)
  • onnx-community/whisper-tiny, onnx-community/whisper-base, onnx-community/whisper-small, onnx-community/whisper-large-v3-turbo, etc. for OpenAI Whisper exported with Hugging Face optimum (onnx-community)

Warning

Some long-ago converted onnx-community models have a broken fp16 precision version.

Example with soundfile:

import onnx_asr
import soundfile as sf

model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")

waveform, sample_rate = sf.read("test.wav", dtype="float32")
model.recognize(waveform, sample_rate=sample_rate)

Batch processing is also supported:

import onnx_asr
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")
print(model.recognize(["test1.wav", "test2.wav", "test3.wav", "test4.wav"]))

Most models have quantized versions:

import onnx_asr
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3", quantization="int8")
print(model.recognize("test.wav"))

Return tokens, timestamps and logprobs:

import onnx_asr
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3").with_timestamps()
print(model.recognize("test1.wav"))

TensorRT

Running an ONNX model on the TensorRT provider with fp16 precision:

import onnx_asr
import tensorrt_libs

providers = [
    (
        "TensorrtExecutionProvider",
        {
            "trt_max_workspace_size": 6 * 1024**3,
            "trt_fp16_enable": True,
        },
    )
]
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3", providers=providers)
print(model.recognize("test.wav"))

VAD

Load a VAD ONNX model from Hugging Face and recognize a WAV file:

import onnx_asr
vad = onnx_asr.load_vad("silero")
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3").with_vad(vad)
for res in model.recognize("test.wav"):
    print(res)

Tip

You will most likely need to adjust VAD parameters to get the correct results.

Supported VAD names:

CLI

The package has a simple CLI interface

onnx-asr nemo-parakeet-tdt-0.6b-v3 test.wav

For full usage parameters, see help:

onnx-asr -h

Gradio

Create simple web interface with Gradio:

import onnx_asr
import gradio as gr

model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")

def recognize(audio):
    if not audio:
        return None

    sample_rate, waveform = audio
    waveform = waveform / 2**15
    if waveform.ndim == 2:
        waveform = waveform.mean(axis=1)
    return model.recognize(waveform, sample_rate=sample_rate)

demo = gr.Interface(fn=recognize, inputs="audio", outputs="text")
demo.launch()

Load ONNX model from local directory

Load ONNX model from local directory and recognize WAV file:

import onnx_asr
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3", "models/parakeet-v3")
print(model.recognize("test.wav"))

Note

If the directory does not exist, it will be created and the model will be loaded into it.

Load a custom ONNX model from Hugging Face

Load the Canary 180M Flash model from Hugging Face repo and recognize the WAV file:

import onnx_asr
model = onnx_asr.load_model("istupakov/canary-180m-flash-onnx")
print(model.recognize("test.wav"))

Supported model types:

  • All models from supported model names
  • nemo-conformer-ctc for NeMo Conformer/FastConformer/Parakeet with CTC decoder
  • nemo-conformer-rnnt for NeMo Conformer/FastConformer/Parakeet with RNN-T decoder
  • nemo-conformer-tdt for NeMo Conformer/FastConformer/Parakeet with TDT decoder
  • nemo-conformer-aed for NeMo Canary with Transformer decoder
  • kaldi-rnnt or vosk for Kaldi Icefall Zipformer with stateless RNN-T decoder
  • whisper-ort for Whisper (exported with onnxruntime)
  • whisper for Whisper (exported with optimum)

Troubleshooting / FAQ

  • Model download fails: Ensure Hugging Face is accessible. To improve download speed set the HF_TOKEN environment variable.
  • Model loading fails: Ensure you have the latest onnxruntime version compatible with your setup. For GPU, verify CUDA / TensorRT installation. Try a different provider (not all models compatible with all providers).
  • Audio loading issues: Check that your WAV file is in a supported format (PCM_U8, PCM_16, PCM_24, PCM_32). Use soundfile for other formats.
  • Audio recognition fails: Most models support up to 20-30 seconds of audio. For longer files, use VAD for segmentation.
  • Slow performance: Try quantized models (e.g., quantization="int8") on CPU or TensorRT for GPU acceleration.
  • Incorrect segmentation with VAD: Adjust VAD parameters like threshold or min_speech_duration_ms for your audio.

For more help, check the GitHub Issues or open a new one.

Comparison with Original Implementations

Packages with original implementations:

  • gigaam for GigaAM models (github)
  • nemo-toolkit for NeMo models (github)
  • openai-whisper for Whisper models (github)
  • sherpa-onnx for Vosk models (github, docs)
  • T-one for T-Tech T-one model (github)

Hardware: 1. CPU tests were run on a laptop with an Intel i7-7700HQ processor. 2. GPU tests were run in Google Colab on Nvidia T4.

Tests of Russian ASR models were performed on a test subset of the Russian LibriSpeech dataset.

Model Package / decoding CER WER RTFx (CPU) RTFx (GPU)
GigaAM v2 CTC default 1.06% 5.23% 7.2 44.2
GigaAM v2 CTC onnx-asr 1.06% 5.23% 11.6 197.0
GigaAM v2 RNN-T default 1.10% 5.22% 5.5 23.3
GigaAM v2 RNN-T onnx-asr 1.10% 5.22% 10.7 84.1
GigaAM v3 CTC default 0.98% 4.72% 12.2 73.3
GigaAM v3 CTC onnx-asr 0.98% 4.72% 14.5 223.1
GigaAM v3 RNN-T default 0.93% 4.39% 8.2 41.6
GigaAM v3 RNN-T onnx-asr 0.93% 4.39% 13.3 92.1
GigaAM v3 E2E CTC default 1.50% 7.10% N/A 178.0
GigaAM v3 E2E CTC onnx-asr 1.56% 7.80% N/A 222.8
GigaAM v3 E2E RNN-T default 1.61% 6.94% N/A 47.6
GigaAM v3 E2E RNN-T onnx-asr 1.67% 7.60% N/A 98.5
Nemo FastConformer CTC default 3.11% 13.12% 29.1 143.0
Nemo FastConformer CTC onnx-asr 3.13% 13.10% 45.8 484.7
Nemo FastConformer RNN-T default 2.63% 11.62% 17.4 111.6
Nemo FastConformer RNN-T onnx-asr 2.62% 11.57% 27.2 119.4
Nemo Parakeet TDT 0.6B V3 default 2.34% 10.95% 5.6 75.4
Nemo Parakeet TDT 0.6B V3 onnx-asr 2.38% 10.95% 9.7 97.3
Nemo Canary 1B V2 default 4.89% 20.00% N/A 14.0
Nemo Canary 1B V2 onnx-asr 5.00% 20.03% N/A 18.6
T-Tech T-one default 1.28% 6.56% 11.9 N/A
T-Tech T-one onnx-asr 1.28% 6.57% 11.7 40.6
Vosk 0.52 small greedy_search 3.64% 14.53% 48.2 71.4
Vosk 0.52 small modified_beam_search 3.50% 14.25% 29.0 24.7
Vosk 0.52 small onnx-asr 3.64% 14.53% 45.5 115.0
Vosk 0.54 greedy_search 2.21% 9.89% 34.8 64.2
Vosk 0.54 modified_beam_search 2.21% 9.85% 23.9 24
Vosk 0.54 onnx-asr 2.21% 9.89% 33.6 97.6
Whisper base default 10.61% 38.89% 5.4 17.3
Whisper base onnx-asr* 10.64% 38.33% 6.6 58.0
Whisper large-v3-turbo default 2.96% 10.27% N/A 13.6
Whisper large-v3-turbo onnx-asr** 2.63% 10.13% N/A 19.5

Tests of English ASR models were performed on a test subset of the Voxpopuli dataset.

Model Package / decoding CER WER RTFx (CPU) RTFx (GPU)
Nemo Parakeet CTC 0.6B default 4.09% 7.20% 8.3 107.7
Nemo Parakeet CTC 0.6B onnx-asr 4.10% 7.22% 11.5 154.7
Nemo Parakeet RNN-T 0.6B default 3.64% 6.32% 6.7 85.0
Nemo Parakeet RNN-T 0.6B onnx-asr 3.64% 6.33% 8.7 69.7
Nemo Parakeet TDT 0.6B V2 default 3.88% 6.52% 6.5 87.6
Nemo Parakeet TDT 0.6B V2 onnx-asr 3.87% 6.52% 10.5 116.7
Nemo Parakeet TDT 0.6B V3 default 3.97% 6.76% 6.1 90.0
Nemo Parakeet TDT 0.6B V3 onnx-asr 3.97% 6.75% 9.5 106.2
Nemo Canary 1B V2 default 4.62% 7.42% N/A 17.5
Nemo Canary 1B V2 onnx-asr 4.67% 7.47% N/A 22.1
Whisper base default 7.81% 13.24% 8.4 27.7
Whisper base onnx-asr* 7.52% 12.76% 9.2 92.2
Whisper large-v3-turbo default 6.85% 11.16% N/A 20.4
Whisper large-v3-turbo onnx-asr** 10.31% 14.65% N/A 29.2

Note

  1. * whisper-ort model (model types).
  2. ** whisper model (model types) with fp16 precision.
  3. All other models were run with the default precision - fp32 on CPU and fp32 or fp16 (some of the original models) on GPU.

Benchmarks

Hardware: 1. Arm tests were run on an Orange Pi Zero 3 with a Cortex-A53 processor. 2. x64 tests were run on a laptop with an Intel i7-7700HQ processor. 3. T4 tests were run in Google Colab on Nvidia T4 with CUDA and TensorRT.

Note

In T4 tests, preprocessors are always run using the TensorRT provider.

Russian ASR models

Notebook with benchmark code - benchmark-ru

Open in Colab

Model Arm RTFx x64 RTFx T4 RTFx (CUDA) T4 RTFx (TensorRT) T4 RTFx (TensorRT, fp16)
GigaAM v2 CTC 0.8 11.6 127.6 197.0 619.8
GigaAM v2 RNN-T 0.8 10.7 52.6 84.1 101.6
GigaAM v3 CTC N/A 14.5 134.8 223.1 706.3
GigaAM v3 RNN-T N/A 13.3 52.4 92.1 99.6
GigaAM v3 E2E CTC N/A N/A 135.6 222.8 716.5
GigaAM v3 E2E RNN-T N/A N/A 63.8 98.5 119.3
Nemo FastConformer CTC 4.0 45.8 127.7 484.7 777.7
Nemo FastConformer RNN-T 3.2 27.2 57.1 119.4 124.9
Nemo Parakeet TDT 0.6B V3 N/A 9.7 63.5 97.3 181.3
Nemo Canary 1B V2 N/A N/A 18.6 N/A N/A
T-Tech T-one N/A 11.7 15.2 40.6 N/A
Vosk 0.52 small 5.1 45.5 115.0 N/A N/A
Vosk 0.54 3.8 33.6 97.6 N/A N/A
Whisper base 0.8 6.6 58.0 N/A N/A
Whisper large-v3-turbo N/A N/A 19.5 N/A N/A

English ASR models

Notebook with benchmark code - benchmark-en

Open in Colab

Model Arm RTFx x64 RTFx T4 RTFx (CUDA) T4 RTFx (TensorRT) T4 RTFx (TensorRT, fp16)
Nemo Parakeet CTC 0.6B 1.1 11.5 106.1 154.7 N/A
Nemo Parakeet RNN-T 0.6B 1.0 8.7 49.7 69.7 N/A
Nemo Parakeet TDT 0.6B V2 1.1 10.5 77.9 116.7 233.8
Nemo Parakeet TDT 0.6B V3 N/A 9.5 77.4 106.2 227.4
Nemo Canary 1B V2 N/A N/A 22.1 N/A N/A
Whisper base 1.2 9.2 92.2 N/A N/A
Whisper large-v3-turbo N/A N/A 29.2 N/A N/A

Convert Model to ONNX

Save the model according to the instructions below and add config.json:

{
    "model_type": "nemo-conformer-rnnt", // See "Supported model types"
    "features_size": 80, // Size of preprocessor features for Whisper or Nemo models, supported 80 and 128
    "subsampling_factor": 8, // Subsampling factor - 4 for conformer models and 8 for fastconformer and parakeet models
    "max_tokens_per_step": 10 // Max tokens per step for RNN-T decoder
}
Then you can upload the model into Hugging Face and use load_model to download it.

Nvidia NeMo Conformer/FastConformer/Parakeet

Install NeMo Toolkit

pip install nemo_toolkit['asr']

Download model and export to ONNX format

import nemo.collections.asr as nemo_asr
from pathlib import Path

model = nemo_asr.models.ASRModel.from_pretrained("nvidia/stt_ru_fastconformer_hybrid_large_pc")

# To export Hybrid models with CTC decoder
# model.set_export_config({"decoder_type": "ctc"})

onnx_dir = Path("nemo-onnx")
onnx_dir.mkdir(exist_ok=True)
model.export(str(Path(onnx_dir, "model.onnx")))

with Path(onnx_dir, "vocab.txt").open("wt") as f:
    for i, token in enumerate([*model.tokenizer.vocab, "<blk>"]):
        f.write(f"{token} {i}\n")

GigaChat GigaAM v2/v3

Install GigaAM

git clone https://github.com/salute-developers/GigaAM.git
pip install ./GigaAM --extra-index-url https://download.pytorch.org/whl/cpu

Download model and export to ONNX format

import gigaam
from pathlib import Path

onnx_dir = "gigaam-onnx"
model_type = "rnnt"  # or "ctc"

model = gigaam.load_model(
    model_type,
    fp16_encoder=False,  # only fp32 tensors
    use_flash=False,  # disable flash attention
)
model.to_onnx(dir_path=onnx_dir)

with Path(onnx_dir, "v2_vocab.txt").open("wt") as f:
    for i, token in enumerate(["\u2581", *(chr(ord("а") + i) for i in range(32)), "<blk>"]):
        f.write(f"{token} {i}\n")

OpenAI Whisper (with onnxruntime export)

Read the onnxruntime instruction to convert Whisper to ONNX.

Download model and export with Beam Search and Forced Decoder Input Ids:

python3 -m onnxruntime.transformers.models.whisper.convert_to_onnx -m openai/whisper-base --output ./whisper-onnx --use_forced_decoder_ids --optimize_onnx --precision fp32

Save the tokenizer config

from transformers import WhisperTokenizer

processor = WhisperTokenizer.from_pretrained("openai/whisper-base")
processor.save_pretrained("whisper-onnx")

OpenAI Whisper (with optimum export)

Export model to ONNX with Hugging Face optimum-cli

optimum-cli export onnx --model openai/whisper-base ./whisper-onnx

License

MIT License